Basic queues

COMPSCI 655
Lecture 7
Seen last lecture: CTMC

\{X(t), t \geq 0\}, X(t) \in S, CTMC \text{ if}

\[P(X(t)=j | X(s_1)=i_1, \ldots, X(s_k)=i_k, X(s)=i) \]

\[= P(X(t)=j | X(s)=i) \quad \text{(Markov property)} \]

for all \(0 \leq s_1 < \ldots < s_k < s < t, i_1, \ldots, i_k, i, j \in S, k=1,2,\ldots\)

\[= F_{i,j} (t-s) \quad \text{(homogeneity)} \]

with infinitesimal generator \(Q = [q_{i,j}]\)

\[Q = \lim_{u \to 0} \frac{(F(u)-I)}{h}, \quad F(u) = [F_{i,j}(u)] \]

\((\Sigma_{i,i} q_{i,i} = 0)\)
Seen last lecture: CTMC (cont')

If \(\{X(t), \, t \geq 0\} \) irreducible CTMC on \(S \) with infinitesimal generator \(Q = [q_{i,j}] \) and if eqns

\[
x \cdot Q = 0, \quad x \cdot 1 = 1
\]

have unique, strictly positive, solution \(x = (x(i), \, i \in S) \), then \(x(i) = \lim_{t \to \infty} P(X(t) = i), \quad i \in S \), regardless of \(X(0) \)

\(q_{i,j} \) = transition rate from state \(i \) to state \(j \neq i \)

Interpretation of \(x \cdot Q = 0 \) (equilibrium eqns):

\[
\text{Prob. flow out a state} = \text{Prob. flow into a state}
\]
Construction rule for checking if \(\{X(t)\}_t \) is CTMC

When process enters state \(i \in S \) at time \(t \) then

- for each \(j \neq i \) an exponential rv \(Y_{i,j} \) with rate \(\eta_{i,j} \) is generated. These rvs are mutually independent and independent of what happened before \(t \).

One may have \(\eta_{i,j} = 0 \) in which case \(Y_{i,j} = \infty \) (i.e. state \(j \) cannot be reached in one transition from state \(i \))

- at time \(t + Y_{i,k} \) with \(Y_{i,k} = \min\{Y_{i,j}\}_j \) process instantaneously jumps into state \(k \)

If true, then \(\{X(t)\}_t \) is CTMC with \(Q = [q_{i,j}] \) given by

\[
q_{i,j} = \begin{cases}
\eta_{i,j} & \text{if } i \neq j \\
-\sum_{l \neq i} \eta_{i,l} & \text{if } i = j
\end{cases}
\]
Queues

Single server queue

Multiple servers and queues
Queues (cont’)

Typical performance metrics of interest

• Condition of stability
• Expected number of customers/jobs/etc. in system
• Expected waiting time in queue
• Expected system response time
• System throughput
• Etc.
Queue represented by Kendall’s notation: A/S/c/K/D

- **A** = nature of arrival process (e.g. A=M if Poisson)
- **S** = nature of service time process (S=M if expon.)
- **c** = number of servers
- **K** = size of queue including # servers (default=infinite)
- **D** = service discipline (default = FIFO)

Unless otherwise mentioned interarrival times and service times are independent iid sequences
Classic queues

- **M/M/1**
Poisson arrivals, exponential service times, 1 server, infinite waiting room

- **M/M/1/K**
Poisson arrivals, exponential service times, 1 server, waiting room of size K-1

- **M/M/c**
Poisson arrivals, exponential service times, c servers, infinite waiting room

- **M/M/c/c**
Poisson arrivals, generally distributed service times, c servers, no waiting room
Classic queues (con't)

- **M/M/∞**
 Poisson arrivals, exponential service times, infinitely many servers, no waiting room

- **M/G/1**
 Poisson arrivals, generally distributed service times, 1 server, infinite waiting room

- **M/D/1**
 Poisson arrivals, constant service time all equal to D, 1 server, infinite waiting room

- **G/M/1**
 Arbitrary interarrival times, exponential service times, 1 server, infinite waiting room
Classic queues (con’t)

Most common service disciplines:
FIFO = First In First Out
LIFO = Last In First Out (stack)
PS = Processor Sharing
M/M/1 queue

- Arrival times \(\{t_n\}_n \) are Poisson with rate \(\lambda \)
- Service times exponentially distributed with rate \(\mu \)

Namely, with \(\tau_n := t_{n+1} - t_n \) and \(\sigma_n = \text{time needed to serve nth customer} \), then

\[
P(\tau_n < x) = 1 - e^{-\lambda x} \quad P(\sigma_n < x) = 1 - e^{-\mu x}
\]

with \(\{\tau_n\}_n \) and \(\{\mu_n\}_n \) mutually ind. iid sequences of rvs
M/M/1 queue

\(X(t) = \# \) customers in system at time \(t \), including the one in service, if any

- When does system is stable? (= queue does not build up)
- \(\lim_{t \to \infty} P(X(t) = n) = ? \)

- System throughput?

\[
\begin{array}{c}
\text{Poisson} \\
\text{Exp.}
\end{array}
\]

Infinite waiting room
Claim: \(\{X(t), t \geq 0\} \) is a CTMC with state-space \(S = \{0, 1, 2, \ldots\} \)

Let us see if construction rule applies

- Assume first that \(X(t) = 0 \)

From state 0 one can only go to state 1 (arrival). Memoryless feature of Poisson implies that next customer will arrive after a time exponentially distributed with rate \(\lambda \)

\(\Rightarrow \) Construction rule applies to state 0 with \(\eta_{0,1} = \lambda \) and \(\eta_{0,j} = 0 \) for \(j > 1 \)
Assume $X(t) = i > 0$

From state $i > 0$ one can either go to state $i+1$ (arrival) or to state $i-1$ (departure)

Time before next arrival is exponentially distributed with rate λ (memoryless property of interarrival times)

Time before next departure is exponentially distributed with rate μ (memoryless property of service times)

Whichever event occurs first, will trigger the next event. Hence, time before next event is min of two independent exponential rvs with rate λ and μ

\Rightarrow Construction rule applies to state $i > 0$ with $\eta_{i,i+1} = \lambda$, $\eta_{i,i-1} = \mu$, $\eta_{i,j} = 0$ for $j \neq i-1, i$
Rate transition diagram for $M/M/1$ queue

Irreducible as one can go from any state i to any other state $j \neq i$ with positive prob.

E.g. if $j = i+2$ then we can go from i to $i+2$ if there are no departure and two arrivals
M/M/1 queue (cont')

Infinitesimal generator

\[
Q = \begin{pmatrix}
-\lambda & \lambda & 0 & 0 & \cdots \\
\mu & -(\lambda + \mu) & \lambda & 0 & \cdots \\
0 & \mu & -(\lambda + \mu) & \lambda & 0 \\
0 & 0 & \mu & -(\lambda + \mu) & \lambda \\
\end{pmatrix}
\]
Balance eqns for M/M/1 queue

$$\lambda x_0 = \mu x_1$$

$$(\lambda + \mu) x_i = \lambda x_{i-1} + \mu x_{i+1}, \ i > 0$$

Easy to find that $x_i = x_0 \rho^i$ for $i > 0$

$x.1 = 1$ gives $x_0 \sum_{i \geq 0} \rho^i = 1$ with $\rho := \lambda/\mu$

- If $\rho < 1$ then $\sum_{i \geq 0} \rho^i = 1/(1-\rho)$, $x_0 = 1-\rho$ and $x_i = (1-\rho)\rho^i > 0$, $i=0,1,...$

Unique strictly positive sol. \Rightarrow CMTQ Thm applies

- $\pi_i = \lim_t P(X(t) = i) = (1-\rho)\rho^i$, $i \geq 0$ - Geometric distr.
 $\rho < 1$ called stability condition (makes sense)

- If $\rho \geq 1$ only solution is $\pi_i = 0$ for all i
 Thm does not apply. Can be shown syst. unstable
Alternative approach for \(M/M/1\) queue

\(\{X(t)\}_t\) is a birth and death process with birth rate \(\lambda\) in any state and death rate \(\mu\) in any state \(i \neq 0\)
Assume $\rho < 1$ (queue stable)

- Queue length distribution: $\pi_i = (1-\rho)\rho^i$, $i \geq 0$

- System throughput: $\mu(1 - \pi_0) = \mu \rho = \lambda$ \hspace{1em} ($\rho = \lambda/\mu$)

Note: makes sense that when system stable input rate (λ) = output rate

- Expected queue-length: $E[X] = (1-\rho)\sum_{i \geq 1} i\rho^i$

\[F(z) = \sum_{i \geq 0} z^i = 1/(1-z), \quad F'(z) = \sum_{i \geq 1} iz^{i-1} = 1/(1-z)^2 \]

$\Rightarrow \sum_{i \geq 1} i\rho^i = \rho/(1-\rho)^2$ \hspace{1em} so that $E[X] = \rho/(1-\rho)$
$E_{M/M/1}[X]$
$P(X \geq K)$?

$P(X < K) = \sum_{i=0}^{K-1} \pi_i = (1 - \rho) \sum_{i=0}^{K-1} \rho^i = (1 - \rho) \frac{1 - \rho^K}{1 - \rho} = 1 - \rho^K$

$P(X \geq K) = \rho^K$
M/M/1/K queue

Poisson

Lost when full

Waiting room of size K-1

Exp.
$X(t) \in S = \{0, 1, \ldots, K\}$ # customers in system at time t, including the one in service, if any

{\{X(t)\}_t}$ CMTT as construction rule applies with

- if $X(t) = 0$: $\eta_{0,1} = \lambda$, $\eta_{0,j} = 0$ for $j \neq 1$

- if $0 \leq X(t) = i \leq K-1$: $\eta_{i,i+1} = \lambda$, $\eta_{i,i-1} = \mu$, $\eta_{i,j} = 0$ for $j \neq i-1, i+1$

- if $X(t) = K$: $\eta_{K,K-1} = \mu$, $\eta_{K,j} = 0$ for $j \neq K-1$

Balance eqns:

\[
\begin{align*}
\lambda \pi_0 &= \mu \pi_1 \\
(\lambda + \mu) \pi_i &= \lambda \pi_{i-1} + \mu \pi_{i+1}, \quad i = 1, \ldots, K-1 \\
\mu \pi_K &= \lambda \pi_{K-1}
\end{align*}
\]
Balance eqns:
\[\lambda x_0 = \mu x_1 \]
\[(\lambda + \mu) x_i = \lambda x_i + \mu x_i, \quad i = 1, \ldots, K-1 \]
\[\lambda x_{K-1} = \mu x_K \]

Unique normalized (i.e. \(x.1 = 1\)) solution
\[x_i = \rho^i(1-\rho)/(1-\rho^{K+1}), \quad i = 0,1,\ldots,K \]

Strictly positive (for all \(\rho\)) + \{X(t)\}_t irreducible yields by CMTQ theorem:

\[\pi_i = \lim_{t \to \infty} P(X(t)=i) = \rho^i (1-\rho)/(1-\rho^{K+1}), \quad i = 0,1,\ldots,K \]

Always stable (makes sense, as system finite)

Note: \(K \to \infty\) and \(\rho < 1\) one retrieves \(M/M/1\) (as \(\rho^{K+1} \to 0\))
\[\pi_i = \rho^i \frac{(1-\rho)}{(1-\rho^{K+1})}, \ i = 0,1,\ldots,K \]

\[E[X] = \sum_{i=0}^{K} i\pi_i = \frac{1-\rho}{1-\rho^{K+1}} \sum_{i=0}^{K} i\rho^i = \rho \frac{1-(K+1)\rho^K + K\rho^{K+1}}{(1-\rho)(1-\rho^{K+1})} \]

Make use of
\[\frac{d}{dz} \left(\sum_{i=0}^{K} z^i \right) = \frac{d}{dz} \left(\frac{1-z^{K+1}}{1-z} \right) = \sum_{i=1}^{K} iz^{i-1} \]
$E_{M/M/1/K}[X]$
$\pi_i = \rho^i (1-\rho)/(1-\rho^{K+1})$, $i = 0,1,...,K$

- Prob. arriving customer lost = π_K

 $$= \frac{\rho^K(1-\rho)}{(1-\rho^{K+1})}$$

- Throughput = $\mu(1-\pi_0) = \mu \left[1 - \frac{(1-\rho)}{(1-\rho^{K+1})}\right]$

 $$= \lambda \frac{(1-\rho^K)}{(1-\rho^{K+1})}$$

 $$= \lambda (1-\pi_K)$$
M/M/c queue

Poisson → Infinite waiting room

Exp

1 → 2 → c
\(M/M/c \) queue (cont’)

\(X(t) \in S = \{0,1,...\} \) # customers in system at time \(t \), including the one in service, if any

\[\{X(t)\}_t \text{ CMTC as construction rule applies with} \]

- if \(X(t) = 0 \): \(\eta_{0,1} = \lambda, \eta_{0,j} = 0 \) for \(j \neq 1 \)
- if \(1 \leq X(t) = i \leq c \): \(\eta_{i,i+1} = \lambda, \eta_{i,i-1} = i \mu, \eta_{i,j} = 0 \) for \(j \neq i-1, i+1 \)
- if \(X(t) = i > c \): \(\eta_{i,i+1} = \lambda, \eta_{i,i-1} = c \mu, \eta_{i,j} = 0 \) for \(j \neq i-1, i+1 \)

Balance eqns:

\[
\begin{align*}
\lambda \pi_0 &= \mu \pi_1 \\
(\lambda + i \mu) \pi_i &= \lambda \pi_{i-1} + (i+1) \mu \pi_{i+1}, \quad i = 1, \ldots, c-1 \\
(\lambda + c \mu) \pi_i &= \lambda \pi_{i-1} + c \mu \pi_{i+1}, \quad i \geq c
\end{align*}
\]
Balance eqns: \[\lambda x_0 = \mu x_1 \]
\[(\lambda + i\mu) x_i = \lambda x_{i-1} + (i+1)\mu x_{i+1}, \quad i = 1, \ldots, c-1 \]
\[(\lambda + c\mu) x_i = \lambda x_{i-1} + c\mu x_{i+1}, \quad i \geq c \]

Unique solution
\[x_i = x_0 \rho^i / i! \quad \text{if } i = 0, 1, \ldots, c \]
\[= x_0 (\rho/c)^i c^c / i! \quad \text{if } i > c \]

x.1=1 gives \[x_0 = \begin{cases} 0 & \text{if } \rho \geq c \\ \left[\sum_{i=0}^{c-1} \frac{\rho^i}{i!} + \frac{\rho^c}{c!} \left(\frac{1}{1 - \rho / c} \right) \right]^{-1} & \text{if } \rho < c \end{cases} \]

Strictly positive solution only if \(\rho < c \)

CMTC thm: \(\pi_i = \lim_{t \to \infty} P(X(t) = i) = x_0 \rho^i / i! \quad \text{if } i = 0, 1, \ldots, c \]
\[= x_0 (\rho/c)^i c^c / i! \quad \text{if } i > c \]
when \(\rho < c \) -- Stability condition of M/M/c queue