Case-study: Modeling and Performance Analysis of BitTorrent Peer-to-Peer Networks

690PE Fall 2016
Fabricio Murai

December 6, 2016
In previous lectures

Lecture 18: Fluid modeling: mean-field

Lecture 19: Fluid modeling: Poisson-driven SDE, on-off fluid source

Lecture 20: Fluid modeling: superposition of on-off fluid sources, ad hoc models

Lectures 21-22: Modeling of TCP
In today's lecture

Learning objectives:

• understand key mechanisms in BitTorrent peer-to-peer systems

• use differential equations (fluid model) as an approximate model for complex systems

• determine stability of systems based on differential equations that describe it
Addendum

Tracker sends list containing only a subset of nodes to each new peer.
Tracker sends list containing only a **subset of nodes** to each new peer

New peer establishes connections to all peers in the list
Addendum

Tracker sends list containing only a **subset of nodes** to each new peer

New peer establishes connections to all peers in the list

Connections are used to push information about piece availability (“I have pieces X, Y, Z”)
Addendum

Tracker sends list containing only a **subset of nodes** to each new peer.

New peer establishes connections to all peers in the list.

Connections are used to **push information about piece availability** (“I have pieces X, Y, Z”).

Some connections will be used for data transfer too.
Addendum

Tracker sends list containing only a subset of nodes to each new peer

New peer establishes connections to all peers in the list

Connections are used to push information about piece availability (“I have pieces X, Y, Z”)

Some connections will be used for data transfer too

If a peer “unchokes” me, I will ask him the rarest piece first among my connections
Assume equilibrium exists:

\[
0 = \lambda - \theta \bar{x} - \min\{c \bar{x}, \mu(\eta \bar{x} + \bar{y})\}, \\
0 = \min\{c \bar{x}, \mu(\eta \bar{x} + \bar{y})\} - \gamma y(t),
\]

(2)
Assume equilibrium exists:

\[0 = \lambda - \theta \bar{z} - \min\{c \bar{x}, \mu(\eta \bar{x} + \bar{y})\}, \]
\[0 = \min\{c \bar{x}, \mu(\eta \bar{x} + \bar{y})\} - \gamma y(t), \] \hspace{1cm} (2)

Assume \(\eta > 0 \)
Assume equilibrium exists:

\[0 = \lambda - \theta \bar{x} - \min\{c\bar{x}, \mu(\eta \bar{x} + \bar{y})\}, \]
\[0 = \min\{c\bar{x}, \mu(\eta \bar{x} + \bar{y})\} - \gamma y(t), \]

(2)

Assume \(\eta > 0 \)

Case 1: \(c\bar{x} \leq \mu(\eta \bar{x} + \bar{y}) \)

\[\bar{x} = \frac{\lambda}{c(1 + \frac{a}{c})} \]
\[\bar{y} = \frac{\lambda}{\gamma(1 + \frac{a}{c})}. \]

(3)
Steady-State equilibrium

Assume equilibrium exists:

\[0 = \lambda - \theta \bar{x} - \min\{c\bar{x}, \mu(\eta \bar{x} + \bar{y})\}, \]
\[0 = \min\{c\bar{x}, \mu(\eta \bar{x} + \bar{y})\} - \gamma y(t), \quad (2) \]

Assume \(\eta > 0 \)

Case 1: \(c\bar{x} \leq \mu(\eta \bar{x} + \bar{y}) \) \(\Rightarrow \frac{1}{c} \geq \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right) \]

\[\bar{x} = \frac{\lambda}{c(1 + \frac{\eta}{c})} \]
\[\bar{y} = \frac{\lambda}{\gamma(1 + \frac{\eta}{c})}. \quad (3) \]
Assume equilibrium exists:

\[0 = \lambda - \theta \bar{x} - \min\{c\bar{x}, \mu(\eta \bar{x} + \bar{y})\}, \]
\[0 = \min\{c\bar{x}, \mu(\eta \bar{x} + \bar{y})\} - \gamma y(t), \] \hspace{1cm} (2)

Assume \(\eta > 0 \)

Case 1: \(c\bar{x} \leq \mu(\eta \bar{x} + \bar{y}) \) \(\Rightarrow \frac{1}{c} \geq \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right) \)

\[\bar{x} = \frac{\lambda}{c(1 + \frac{\mu}{c})} \]
\[\bar{y} = \frac{\lambda}{\gamma(1 + \frac{\mu}{c})}. \] \hspace{1cm} (3)

Case 2: \(c\bar{x} > \mu(\eta \bar{x} + \bar{y}) \) \(\Rightarrow \frac{1}{c} < \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right) \)
Average download time (those who don’t abandon)?

\[
\theta x(t) \\
\min\{cx(t), \mu(\eta x(t) + y(t))\}
\]
Little’s Law

Average download time (those who don’t abandon)?

$$\theta \bar{x}(t)$$

Effective arrival rate:

$$\lambda - \theta \bar{x}$$

Fraction who don’t abandon:

$$\frac{\lambda - \theta \bar{x}}{\lambda}$$
Little’s Law

Average download time (those who don’t abandon)?

\[\lambda \]

\[\min \{ cx(t), \mu(\eta x(t) + y(t)) \} \]

\[\theta x(t) \]

Effective arrival rate:

\[\lambda - \theta \bar{x} \]

Fraction who don’t abandon:

\[\frac{\lambda - \theta \bar{x}}{\lambda} \]

\[\frac{\lambda - \theta \bar{x}}{\lambda} \bar{x} = (\lambda - \theta \bar{x})T \]

\[\frac{\bar{x}}{\bar{x}} = T \]
Each leecher is connected to $k = \min\{x - 1, K\}$ peers.

Peer i has pieces of interest to $1+$ peers connected to it. \Rightarrow peer i will upload data.
Each leecher is connected to $k = \min\{x - 1, K\}$ peers.

Peer i has pieces of interest to $1+$ peers connected to i. \Rightarrow peer i will upload data

$$\eta = 1 - \mathbb{P}\left(\text{downloader } i \text{ has no piece that the connected peers need}\right).$$
Each leecher is connected to \(k = \min\{x - 1, K\} \) peers.

Peer \(i \) has pieces of interest to \(1+ \) peers connected to it \(\Rightarrow \) peer \(i \) will upload data.

\[
\eta = 1 - \Pr\left\{ \text{downloader } i \text{ has no piece that the connected peers need} \right\}.
\]

Assumption: piece distributions between peers are i.i.d.
Each leecher is connected to \(k = \min\{x - 1, K\} \) peers.

Peer \(i \) has pieces of interest to \(1+ \) peers connected to it \(\rightarrow \) peer \(i \) will upload data

\[
\eta = 1 - \mathbb{P}\left\{ \text{downloader } i \text{ has no piece that the connected peers need} \right\}.
\]

Assumption: piece distributions between peers are i.i.d.

\[
\eta = 1 - \mathbb{P}\left\{ \text{downloader } j \text{ needs no piece from downloader } i \right\}^k.
\]

\[
downloader j \text{ needs no piece from downloader } i \right\} = \mathbb{P}\{j \text{ has all pieces of download} \}.
\]
Let n_i be the number of pieces peer i has.

Assumption: $n_i \sim \text{uniform in } \{0, \ldots, N - 1\}$.

Assumption (rarest-first): Given n_i, these pieces are randomly chosen.
Let n_i be the number of pieces peer i has.

Assumption: $n_i \sim \text{uniform in } \{0, \ldots, N - 1\}$.

Assumption (rarest-first): Given n_i, these pieces are randomly chosen.

\{ j has all pieces of downloader i \}
Effectiveness of File Sharing (2/4)

Let n_i be the number of pieces peer i has.

Assumption: $n_i \sim \text{uniform in } \{0, \ldots, N - 1\}$.

Assumption (rarest-first): Given n_i, these pieces are randomly chosen.

\[\{j \text{ has all pieces of downloader } i\} \]

\[
= \sum_{n_j=1}^{N-1} \sum_{n_i=0}^{n_j} \frac{1}{N^2} \mathbb{P}\{j \text{ has all pieces of } i | n_i, n_j\}
\]

\[
= \sum_{n_j=1}^{N-1} \sum_{n_i=0}^{n_j} \frac{1}{N^2} \frac{(N-n_i)}{\binom{N}{n_j}}
\]
Let n_i be the number of pieces peer i has.

Assumption: $n_i \sim$ uniform in $\{0, \ldots, N - 1\}$.

Assumption (rarest-first): Given n_i, these pieces are randomly chosen.

\[
\{j \text{ has all pieces of downloader } i\}
\]

\[
= \sum_{n_j=1}^{N-1} \sum_{n_i=0}^{n_j} \frac{1}{N^2} P\{j \text{ has all pieces of } i|n_i, n_j\}
\]

\[
= \sum_{n_j=1}^{N-1} \sum_{n_i=0}^{n_j} \frac{1}{N^2} \frac{\binom{N-n_i}{n_j}}{\binom{N}{n_j}}
\]

\[
\sum_{n_i=0}^{n_j} \binom{N-n_i}{n_j} = \binom{N+1}{n_j}
\]

Chu-Vandermonde identity.
j has all pieces of downloader i} \\
= \sum_{n_j=1}^{N-1} \frac{1}{N^2} \frac{\binom{N+1}{n_j}}{\binom{N}{n_j}} \\
= \sum_{n_j=1}^{N-1} \frac{N+1}{N^2(N+1-n_j)} \\
= \frac{N+1}{N^2} \sum_{n_j=1}^{N-1} \frac{1}{N+1-n_j} \\
= \frac{N+1}{N^2} \sum_{m=2}^{N} \frac{1}{m} \approx \frac{\log N}{N}$
\[\eta = 1 - P \left\{ \text{downloader } j \text{ needs no piece from downloader } i \right\}^k, \]

\[\approx 1 - \left(\frac{\log N}{N} \right)^k. \] \hspace{1cm} (7)

Suppose file size 1GB, piece size 256KB \(\Rightarrow N = 4,000 \)

Then for \(k = 1, \eta \approx 0.998. \)
Physical stability of system of differential equations:

First-order equations:

\[\dot{x} = f(t, x), \quad t \geq 0, \quad x(0) = x_0 \]

A solution \(\phi(t) \) is stable if every solution \(\psi(t) \) close to \(\phi(t) \) at \(t = 0 \) remains close for all \(t > 0 \).
Physical stability of system of differential equations:

\[\dot{x} = f(t, x), \; t \geq 0, \; x(0) = x_0 \]

A solution \(\phi(t) \) is stable if every solution \(\psi(t) \) close to \(\phi(t) \) at \(t = 0 \) remains close for all \(t > 0 \).

Formally, for each \(\epsilon > 0 \) there is a \(\delta > 0 \) such that \(|\psi(t) - \phi(t)| < \epsilon \) whenever \(|\psi(0) - \phi(0)| < \delta \).
Physical stability of system of differential equations:

\[\dot{x} = f(t, x), \quad t \geq 0, \quad x(0) = x_0 \]

Solution \(\phi(t) \) is stable if every solution \(\psi(t) \) close to \(\phi(t) \) at \(t = 0 \) remains close for all \(t > 0 \).

Formally, for each \(\epsilon > 0 \) there is a \(\delta > 0 \) such that

\[|\psi(t) - \phi(t)| < \epsilon \]

whenever \(|\psi(0) - \phi(0)| < \delta \).

In general, depends greatly on \(f(t, x) \), may be intractable. Expression doesn’t depend explicitly on \(t \), analysis is tractable.
Stability (cont'd)

\[
Df(x) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\]

- matrix of 1st order partial derivatives of \(f((x)) \) evaluated at \(c \)
- eigenvalues of \(Df(c) \):
 - all have negative real part \(\Rightarrow \) every sol. stable
 - at least one has positive real part \(\Rightarrow \) every sol. unstable
Let A: $n \times n$ matrix.

$$Au = \omega u$$

$u \in \mathbb{R}^n$ is an eigenvector of A

associated with eigenvalue $\omega \in \mathbb{C}$.
Eigenvalues and characteristic equation

Let A: $n \times n$ matrix.

$$Av = \omega v$$

$v \in \mathbb{R}^n$ is an eigenvector of A

Associated with eigenvalue $\omega \in \mathbb{C}$.

$$(A - \omega I)v = 0$$
Eigenvalues and characteristic equation

Let A: $n \times n$ matrix.

$$Av = \omega v$$

$v \in \mathbb{R}^n$ is an eigenvector of A associated with eigenvalue $\omega \in \mathbb{C}$.

$$(A - \omega I)v = 0$$

Vector 0 is not considered an eigenvector. Hence, eigenvalues correspond to the solutions of

$$\det(A - \omega I) = 0,$$

which gives rise to the characteristic equation.
\[\frac{1}{c} < \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right): \]

\[\psi^2 + (\mu \eta + \theta + \gamma - \mu)\psi + \mu\eta\gamma + \theta(\gamma - \mu) = 0 \]

\[\frac{1}{c} < \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right), \text{ we have } \gamma > \mu. \]

\[\text{If } \eta > 0, \mu \eta + \theta + \gamma - \mu > 0 \text{ and } \mu \eta \gamma + \theta(\gamma - \mu) > 0, \text{ eigenvalues have strictly negative real parts } \Rightarrow \text{ stable.} \]
Stability analysis

\[\frac{1}{c} < \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right): \]
\[\psi^2 + (\mu \eta + \theta + \gamma - \mu) \psi + \mu \eta \gamma + \theta (\gamma - \mu) = 0 \]
\[\frac{1}{c} < \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right), \text{ we have } \gamma > \mu. \]

If \(\eta > 0, \mu \eta + \theta + \gamma - \mu > 0 \) and \(\mu \eta \gamma + \theta (\gamma - \mu) > 0 \),

the eigenvalues have strictly negative real parts \(\Rightarrow \) stable.

\[\frac{1}{c} > \frac{1}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right): \]
\[\psi^2 + (\theta + \gamma + c) \psi + (\theta + c) \gamma = 0 \]

the eigenvalues have strictly negative real parts \(\Rightarrow \) stable.