Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your work. If you make a mistake, it will also help the grader show you where you made a mistake. Your submitted homework should be printed out (i.e., please don’t hand in hand-written answers, unless you need to hand-annotate the printed text, or draw a figure). See the class web-page for more information about handing in homework assignments.

Problem 1. DNS Basics. Consider the DNS iterative query, as shown on notes page 3-10 (in module 3 notes). Suppose the round trip time (RTT) between the computer cis.poly.edu (and any other computer in poly.edu) and its local name server, dns.poly.edu, is 10 milliseconds, and that the RTT from dns.poly.edu to any other Internet site is 100 milliseconds. The local DNS server cache at dns.poly.edu, and that the caches of all other DNS servers are initially empty

a) How long is the time between when cis.poly.edu first makes sends a DNS query for the IP address of gaia.cs.umass.edu, and the time that it gets a reply to that DNS query? Explain how you arrived at your answer.

b) Now suppose a second computer in poly.edu send a DNS query to its local name server, dns.poly.edu, and again asks for the IP address of gaia.cs.umass.edu. How long is it until this query is satisfied? Explain your answer.

Problem 2. Caching. We’ve seen caching occur at a local DNS server, in a user’s web browser, and in an HTTP web cache in an institutional network. Answer the following questions for each of these three types of caches: browser cache, web cache, local DNS server cache (so overall you’ll have 6 answers to the two questions below):

a) Is the information returned (from a browser, web or DNS cache, if cached there) guaranteed to be the same up-to-date information as what is stored at the remote origin server where this information is maintained?

b) If your answer to a question n (a) is YES, then how does the cache (browser cache, web cache, or local DNS server cache) determine that the content is up-to-date? If your answer to a question is NO, then how will that locally cached copy ever be synchronized with (i.e., the same as, at least for some amount of time) as the up-to-date version at the origin server?
Problem 3. Reliable data transfer. This problem is a variation on the reliable data transfer protocol that we designed and studied in class, and will take a bit of thought. You will be designing a series of protocols, each a bit more complex, as each will have to deal with additional impairments (packet corruption, packet loss) on the channel. This problem is a variation of what we did in class, so make sure you understand that (in particular notes pages 8-29 in the module4 notes). Here we go ….

Suppose we have two computers A and B. B has a large supply of ordered pieces of data, D1, D2, D3, … and A is going to request that these pieces of data be sent from B to A one at a time. Specifically an application at A will make a request to your transport protocol at A to get the next piece of data from B. Your transport protocol at A will then interact with your transport protocol at B, and your transport protocol eventually deliver the requested piece of data (just once – no duplicates and no missing pieces of data) up to the application at A.

Perfect channel. Let first assume that the channel is perfect, i.e., that it won’t corrupt or lose any messages. You must design the protocol at A and the protocol at B for this channel, to allow to request and receive data items from B and deliver them to the application at A, one at at time, following a request by the application at A to get the next data time.. You should only use the protocol mechanisms (sequence numbers, timers, checksums) that are needed for this scenario. [Hint: you don’t need these for a perfect channel]

a) In words, what messages will your protocol use, and what is contained in a message? In words, what will A do and what will B do?
b) Draw a timing diagram of the sender and receiver exchanging messages, e.g., as in page 18 of the module4 notes.
c) Now specify your protocol using a finite state machine. Remember that there is a finite state machine for A and another for B (recall notes page 16 in Module4 notes) Here are partially-complete finite state machine representations to get you started:

A channel that can corrupt but not lose messages. Now assume that the channel can corrupt messages but will not lose messages, i.e., that any message that is sent will come out the other side, but possibly corrupted.
Messages can be corrupted in both the A-to-B and B-to-A directions on the channel! You must design the protocol at A and the protocol at B for this channel, to allow to request and receive data items from B and deliver them to the application at A, one-at-a-time, following a request by the application at A to get the next data time. You should only use the protocol mechanisms (sequence numbers, timers, checksums) that are needed for this scenario.

d) In words, what messages will your protocol use, and what is contained in a message? In words, what will A do and what will B do?
e) Draw three timing diagram of the sender and receiver exchanging messages, e.g., as in page 18 of the module4 notes. Show what happens in the case of (i) no message corruption, (ii) a message being corrupted on the A-to-B channel, and (iii) a message being corrupted on the B-to-A channel.
f) Now specify your protocol using finite state machines for A and B.

A channel that can corrupt AND lose messages. This is the trickiest. Now assume that the channel can corrupt messages and possibly lose messages. Messages can be corrupted or lost in either the A-to-B or B-to-A directions on the channel! You must design the protocol at A and the protocol at B for this channel, to allow to request and receive data items from B and deliver them to the application at A, one-at-a-time, following a request by the application at A to get the next data time.

a) In words, what messages will your protocol use, and what is contained in a message? In words, what will A do and what will B do?
b) Draw three timing diagram of the sender and receiver exchanging messages, e.g., as in page 18 of the module4 notes. Show what happens in the case of (i) no message loss (don’t worry about corrupted messages), (ii) a message being lost on the A-to-B channel (don’t worry about corrupted messages), and (iii) a message being lost on the B-to-A channel (don’t worry about corrupted messages).
c) Now specify your protocol using finite state machines for A and B.

Problem 4. CDN and Netflix quickies. Answer each of the questions below briefly – a couple of sentences each will suffice.

a) What is the purpose of the manifest file that is sent to the Netflix client?
b) Suppose the path from the video server sending video data to a Netflix client becomes congested. Might the quality of the video (as determined by the video’s encoding rate, say 256Kbps, 512 Kbps, or 1 Mbps) change? Explain briefly.
c) Is it possible that a Netflix client will change the video server from which it is receiving a video in the middle of a video? Explain briefly.