Ch. 6: Wireless and Mobile Networks

Background:
- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 6 outline

Introduction

Wireless
- Wireless links, characteristics
- IEEE 802.11 wireless LANs (“Wi-Fi”)
- Cellular Internet Access
 - architecture
 - standards (e.g., GSM)
 - cellular mobility
Elements of a wireless network

- **wireless hosts**
 - laptop, smartphone
 - run applications
 - may be stationary (non-mobile) or mobile
 - wireless does *not* always mean mobility
Elements of a wireless network

- **base station**
 - typically connected to wired network
 - relay - responsible for sending packets between wired network and wireless host(s) in its "area"
 - e.g., cell towers, 802.11 access points

- **wireless link**
 - typically used to connect mobile(s) to base station
 - also used as backbone link
 - multiple access protocol coordinates link access
 - various data rates, transmission distance
Chapter 6 outline

Introduction

Wireless
- Wireless links, characteristics
- IEEE 802.11 wireless LANs (“Wi-Fi”)
- Cellular Internet Access
 - architecture
 - standards (e.g., GSM)

Mobility
- Principles: addressing and routing to mobile users
- Mobile IP
- Handling mobility in cellular networks
- Mobility and higher-layer protocols
Wireless Link Characteristics

important differences from wired link

- **decreased signal strength**: radio signal attenuates as it propagates through matter (path loss)
- **interference from other sources**: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- **multipath propagation**: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more “difficult”

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem
- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:
- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

IEEE 802.11 Wireless LAN

802.11b
- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a
- 5-6 GHz range
- up to 54 Mbps

802.11g
- 2.4-5 GHz range
- up to 54 Mbps

802.11n: multiple antennae
- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka “cell”) in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only
802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:
(1) beacon frames sent from APs
(2) association Request frame sent: H1 to selected AP
(3) association Response frame sent from selected AP to H1

active scanning:
(1) Probe Request frame broadcast from H1
(2) Probe Response frames sent from APs
(3) Association Request frame sent: H1 to selected AP
(4) Association Response frame sent from selected AP to H1
IEEE 802.11: multiple access

- avoid collisions: 2^+ nodes transmitting at same time
- 802.11: CSMA - sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender
1. if sense channel idle for DIFS then
 transmit entire frame (no CD)
2. if sense channel busy then
 start random backoff time
 timer counts down while channel idle
 transmit when timer expires
 if no ACK, increase random backoff interval, repeat 2

802.11 receiver
- if frame received OK
 return ACK after SIFS (ACK needed due to hidden terminal problem)
Avoiding collisions (more)

idea: allow sender to “reserve” channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits *small* request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they’re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!
802.11 frame: addressing

Address 1: MAC address of wireless host or AP to receive this frame
Address 2: MAC address of wireless host or AP transmitting this frame
Address 3: MAC address of router interface to which AP is attached
Address 4: used only in ad hoc mode

802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps
Chapter 6 outline

Introduction

Wireless
- Wireless links, characteristics
- IEEE 802.11 wireless LANs (“Wi-Fi”)
- Cellular Internet Access
 - architecture
 - standards (e.g., GSM)
 - Mobility

Components of cellular network architecture

- MSC
 - connects cells to wired tel. net.
 - manages call setup (more later!)
 - handles mobility (more later!)

- cell
 - covers geographical region
 - base station (BS) analogous to 802.11 AP
 - mobile users attach to network through BS
 - air-interface: physical and link layer protocol between mobile and BS

- wired network
- Public telephone network
Cellular networks: the first hop

Two techniques for sharing mobile-to-BS radio spectrum
- **combined FDMA/TDMA:** divide spectrum in frequency channels, divide each channel into time slots
- **CDMA:** code division multiple access

2G (voice) network architecture

3G (voice+data) network architecture

Key insight: new cellular data network operates *in parallel* (except at edge) with existing cellular voice network
- voice network unchanged in core
- data network operates in parallel

Radio access network
- Universal Terrestrial Radio Access Network (UTRAN)

Core network
- General Packet Radio Service (GPRS) Core Network
- Public Internet

Radio interface
- WCDMA, HSPA

Wireless, Mobile Networks 6-25
Components of cellular network architecture

recall:

- wired public telephone network
- correspondent
- different cellular networks, operated by different providers

Handling mobility in cellular networks

- **home network**: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - **home location register (HLR)**: database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)

- **visited network**: network in which mobile currently resides
 - **visitor location register (VLR)**: database with entry for each user currently in network
 - could be home network
GSM: indirect routing to mobile

1. Call routed to home network
2. Home MSC consults HLR, gets roaming number of mobile in visited network
3. Home MSC sets up 2nd leg of call to MSC in visited network
4. MSC in visited network completes call through base station to mobile

GSM: handoff with common MSC

- **handoff goal:** route call via new base station (without interruption)
- **reasons for handoff:**
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM does not mandate why to perform handoff (policy), only how (mechanism)
- **handoff initiated by old BSS**
GSM: handoff with common MSC

1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
2. MSC sets up path (allocates resources) to new BSS
3. new BSS allocates radio channel for use by mobile
4. new BSS signals MSC, old BSS: ready
5. old BSS tells mobile: perform handoff to new BSS
6. mobile, new BSS signal to activate new channel
7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
8. MSC-old-BSS resources released

NSA, mobility tracking

- Dec. 4, 2013: NSA tracking cellphone locations worldwide, Snowden documents show
 The Washington Post

Course Summary

What have we learned: a huge amount!

- principles
- practice
- policy, social
- business
What did we do?

- Introduction to networking
- Network structure, who controls the Internet (ICANN, domain names)
- Application layer, including HTTP
- 3rd party cookies, ad networks
- Dealing with scale: DNS
- CDNs, Netflix case study
- Reliable data transfer
- Congestion control
- TCP, UDP, IP protocols
- What’s inside a router?
- Addressing, DHCP, IPv6
- Dijkstra’s link state, distance vector algorithms
- P2P forensics: illegal content
- Snowden and NSA: privacy
- Network neutrality
- Local area networks
- Multiple access networks
- Wireless networks: WiFi, cellular

Whither goest networking?
(some big-picture thoughts)
Q: Whither goest networking?

A: nobody knows! General tends:

- **ubiquity** of communications
 - IP dialtone, IP: like electricity: it’s everywhere!
 - network-capable appliances (e.g., smart homes)
 - issues of scale important: 100’s of millions of network-connected devices
- **mobility** important:
 - people move, need to communicate
- **multimedia** important:
 - it is how people communicate
- **application-layer networking**: p2p, skype – services at the edge (at the application layer)

Q: Whither goest networking?

- **increasing link rates**, but bandwidth not free
 - increased bandwidth requirements of enabled apps (video to become 90% of backbone traffic?)
- **cyber-physical systems**: embedded networked devices “everywhere”
- **security, management, robustness**: critical concerns
- **agents**: processing “in” or “on” the network in support of end users
- **regulation, privacy, business models**
 - net neutrality
 - comcast vs level-3/netflix: a glimpse of things to come?
 - NSA
The future: a broader view

1980 - 1995

computing
communications

1995-2009

computing
communications

2009 - ?

Content, applications

Our Very Last Note Page!

- **networking**: will play a central role in computing, information processing

- **this course**:
 - Internet architecture, protocols
 - fundamental issues: reliable data transfer, flow/congestion control, routing, multiple access, switching
 - business: ad networks, CDNs,
 - policy: privacy, network neutrality

- **remember**: you learned it HERE!

- **Thanks!**