SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage

Aditya Mishra*, David Irwin*, Prashant Shenoy*, Jim Kurose*, Ting Zhu‡

Feb 22nd, 2013

University of Massachusetts Amherst*
Binghamton University‡
Buildings are Heavy Power Consumers

- Consumes 48% of total energy and 76% of electricity
- Making buildings energy efficient important problem
Our Sensor Deployment (I)

- **Building-level Sensors**
 - eGauges
 - Measures aggregate consumption
 - Measurements every second
 - TED

- **Outlet-level Sensors**
 - Insteon meters/switches
 - Polled every 10 seconds
 - AC-power lines and RF communication
 - Z-Wave devices
 - Control appliances wirelessly
 - Use low-power radio waves (900 MHz)
 - Kill-A-Watt
Our Sensor Deployment (II)

- Current deployment
 - Three homes instrumented with eGauges
 - ~35 outlets instrumented with Insteon switches
- Weather and solar data deployment
 - Three weather stations
Demand-Side Energy Management

- Techniques to control building’s energy footprint
 - Respond to energy availability
 - Manual
 - Automatic

- Components of DSEM
 - Load monitoring
 - Load shedding
 - Load shifting
 - Reduce peak usage
Benefits of Peak Load Reduction

- For utilities:
 - Infrastructure savings
 - Lower operating cost
 - Less carbon emissions
 - Transmission & distribution
 \[(\text{loss} \approx \text{current}^2)\]

- For consumers:
 - Cost savings
 - Reliable grid
Incentivizing Peak Reduction

- An attempt to reduce peak demand
- Examples: Ontario, CA and Illinois, US
Using Dynamic Pricing to Shave Peak

- Push usage to off-peak
 - Limited utility
 - User discomfort

- Energy Storage
 - Charge during off-peak
 - Use in peak periods
Problem Statement

- Advent of dynamic electricity pricing
 - Opportunity to reduce bills, demand peaks

- Requires user involvement
 - Need to monitor and plan consumption
 - Users don’t want to plan usage

- Can we lower electricity bills w/o any user involvement?
Outline

- Motivation
- SmartCharge Overview
- Cost Minimization Algorithm
- Evaluation
 - How much can we save
 - Cost-Benefit Analysis
- Conclusions
SmartCharge: Battery as Energy Store

- **Key idea:** charge battery at off-peak hours
 - Use off-peak rates
 - Use stored energy at peak to reduce grid draw

![Graph showing Illinois Real-time Hourly Rate and Grid Power with and without SmartCharge](image-url)
SmartCharge: Challenges

- **Goal:** optimize energy bills and reduce peaks
 - *When to charge?*
 - Need to know the price of electricity
 - *When to use?*
 - At any instant, must determine if power should be consumed from grid vs. battery

- Must account for battery inefficiencies
 - ~20% of stored energy is lost
 - Price differential must override inefficiencies
Key idea: Linear Programming Formulation

- Minimize price
- Electricity prices from day ahead market
- Predict consumption

Inputs

- Known
 - Electricity Prices
- Predict
 - Next Day Demands

Outputs

- When & how much to Charge Battery
- When & how much to Discharge Battery
SmartCharge: LPF

1. **Objective**
 \[
 \min \sum_{i=1}^{T} m_i
 \]

2. **Energy charged \(\geq 0 \)**
 \[
 s_i \geq 0, \forall i \in [1, T]
 \]

3. **Energy discharged \(\geq 0 \)**
 \[
 d_i \geq 0, \forall i \in [1, T]
 \]

4. **Max charging rate**
 \[
 s_i \leq C/4, \forall i \in [1, T]
 \]

5. **Charge conservation**
 \[
 \sum_{t=1}^{i} d_t \leq e \times \sum_{t=1}^{i} s_t, \forall i \in [1, T]
 \]

6. **Capacity constraint**
 \[
 \left(\sum_{t=1}^{i} s_t - \sum_{t=1}^{i} \frac{d_t}{e} \right) \times I \leq C, \forall i \in [1, T]
 \]

7. **Price calculation**
 \[
 m_i = (p_i + s_i - d_i) \times I \times c_i, \forall i \in [1, T]
 \]
SmartCharge: ML-Based Demand Prediction

- Predict future energy usage
 - Model includes many data features
 - Weather (temperature + humidity)
 - Time (month, day, weekend, holiday)
 - History (previous day)
 - 70 days of training period, 40 days of testing

- Best predictions with SVM-Poly
 - ~5.75% of real usage
 - Better at night (within 4%)
System Architecture Overview

- Electric Grid
- Battery Array
- Charge Control
- Inverter
- Power Transfer Switch
- Gateway
 - Control I/O
 - Energy Level Monitor
 - Consumption Monitor
- Panel Meter
- Energy Flow
 - Monitor Flow
 - Control Flow
1) A real home’s power consumption

2) Data from 435 anonymous homes

3) Ontario’s TOU, ISO-NE dynamic prices

4) Use CPLEX to solve LPF
Evaluation: Household Savings

- 10-15% savings
- Within 8-12% of Oracle
- Savings flatten >24kWh
- Charging not a limitation
Evaluation: Battery Sharing

- Savings increase with No of homes
- Homes peak at different times
Evaluation: Grid-scale Effects

- Significant grid peak reduction
- Lower prices for everyone!

![Graph showing % Peak Reduction vs % Homes with a 20% reduction indicated.]
Evaluation: Grid-scale Effects

- Increases peak at scale
 - Pricing not incentive-compatible
 - Motivates new pricing plans

% Peak Reduction

20% reduction!

Peak doubles!
Evaluation: Cost-Benefit Analysis

- +ROI if already use energy storage
 - Photovoltaics, electric vehicles, UPSs, etc.
- -ROI today to install energy storage, but...
 - ...battery advancements (lead-carbon)
 - ...better pricing plans (distribute cost)
 - ...time (rising prices and ratios)
Conclusions

- Presented SmartCharge
 - Stores cheap energy, uses during peak
 - ML model for demand prediction
 - LPF for charging-discharging decisions
 - Lowers bills transparently

- 10-15% cost savings

- 20% peak reduction in grid peak

- Potential for EVs as energy storage
Thank You!

Aditya Mishra
adityam@cs.umass.edu