ACM SIGCOMM Education Workshop
Graduate Curriculum Panel

Raj Yavatkar
Chief Software Architect
Intel® Internet eXchange Architecture
raj.yavatkar@intel.com
What have I found about incoming graduates ..

• Confusing networking with
 – client-server programming
 – CLI-based router configuration
 – Survey of research papers, telecomm standards
• Little or no *hands on* experience
 – Building experimental systems
 – background in performance evaluation and traffic characterization
 – Concepts behind discrete-event simulation
• Lack of understanding of networking system design and architecture
 – An analogy with computer architecture or OS architecture
 – Distributed architecture with backplanes, switch fabrics, blades, etc
Networking background requires ..

- Basics of efficient protocol design
 - multiple access, distributed state/stateless, fault tolerance
- Network security as a *first class object* (an integral part)
 - NAT/firewall, DDOS, authentication, encryption
- Performance analysis and evaluation
 - Traffic characterization, simulation, quantitative analysis
- **Network system architecture and design**
 - Move beyond a BSD PC-based router
 - Distributed router with switch fabric, backplane, etc
 - Solid grasp of algorithm/data structure design and analysis
 - Hashing/lookups, queuing efficient data structures for handling large no of queues, timers, etc
Graduate-level course(s)

• Must assume students have had an undergrad class
 – 7-layer model, encap/decap, error detection, ARQ, flow control known
 – Client-server model and socket programming

• Graduate core consisting of two courses
Graduate Course contents

- Focus on protocol design concepts
 - A variety of link and physical layers and implications
 - Detailed example of a protocol design and evaluation
- Include basics of network security
 - E.g., avoid DOS in protocol or algorithm design
- Detailed study of..
 - Routing algorithms, scalable network design
 - Flow and congestion control alternatives with simulation
 - Performance evaluation and traffic characterization
 - Packet processing stages at a node
 - Packet classification algorithms, media and switch fabric I/O
 - Traffic scheduling and queuing disciplines
 - Protocol conversion (IPv4-IPv6, IP/ATM/POS, etc)
- Architecture and design of a distributed router
 - Centralized vs distributed control plane, line card design tradeoffs, switch fabric choices and implications
Graduate Course contents (contd.)

- Concepts supplemented with classic papers
 - Congestion avoidance/control
 - Traffic scheduling disciplines
 - Unicast vs multicast routing

- Hands-on projects a *must* component
 - An experimental project to build a networking system
 - Switch/router with QoS, firewall, NAT, IDS
 - *What-if* scenarios with different scheduling, congestion control policies (e.g., RED vs Blue)
 - NS-2 as a traffic generator for the experimental platform
 - At least one NS-2 based simulation project to reproduce results from classic papers
 - Interactions across multiple nodes
How can we help?

• **Network processors as an open, experimental platform**
 - Equivalent of BSD kernel, a better tool to understand system design and architecture tradeoffs

• **Intel’s IXA University program**
 - Over 30 schools funded worldwide
 - A community of educators and researchers

Open issues

- What should you *not* be teaching?
- How to incorporate *network security* as a basic building block
- A separate inter-disciplinary course on “network ethics”
 - Integrity, ethics, etc
 - Demonstrated perils of hacking (“traffic school”)
 - Must be offered jointly with socialists
 - *Not* specific to networking
Backup
What do we need?

• A sequence of Solid grasp of concepts in following areas
 – Algorithm design and analysis
 – Hashing, CRC, p-tree, lookups, efficient data structures for handling large no of queues, timers, etc
 – Routing, queuing, congestion control algorithms
 – Basics of Protocol design
 – Address new link-layer issues
 – Design an efficient protocol, etc
 – Network security as a *first class object*
 – NAT/firewall, authentication, encryption
 – Performance analysis and evaluation
 – Traffic characterization, simulation, quantitative analysis
 – Network system architecture and design
 – Move beyond a BSD PC-based router
• Hands-on experience with a non-trivial exercise
Notes from the breakout session

• What are foundational courses (concepts?) that prepare students for research or industry career in networking?
 – Graph theory, queuing theory, random processes
 – Experimental methodology incl simulation, experience building a system incl design tradeoffs and perf characterization
 – Theory of protocol design
 – Modeling a system (abstract vs concrete?)

• Case studies
 – Study RFP, RFP responses, evaluation
 – E.g. “state of KS chooses telecom switches”