cx, icx Stochastic Orderings

We focus only on nonnegative valued random variables.

Defn. Let $X, Y \in (\mathbb{R}^+)^n$ be random variables such that $E[f(X)] \geq E[f(Y)] \ \forall f$ that are cx (resp. icx). Then we say that X is larger than Y in the sense of convex (resp. increasing convex) order and write it as $Y \preceq_{cx} X$ (resp. $Y \preceq_{icx} X$).
Properties of \(cx, icx \) Orderings

Let \(X, Y \in \Re^+ \). If \(X \geq_{cx} Y \), then

- \(E[X] = E[Y] \),
- \(\sigma_X^2 \geq \sigma_Y^2 \),
- \(E[X^k] \geq E[Y^k] \), \(k > 1 \).

If \(X \geq_{icx} Y \), then \(E[X^k] \geq E[Y^k] \), \(k \geq 1 \). Furthermore, if \(E[X] = E[Y] \), then \(X \geq_{cx} Y \).

Last, if \(Y \) is a constant, then \(Y \leq_{cx} X \) \(\forall X \) st \(E[X] = Y \).
G/G/1 Queue

Single server queue with FCFS (first come first serve). Let \(\{\tau_n\} \) and \(\{X_n\} \) be mutually independent iid sequences of rvs corresponding to interarrival times and service times respectively. Let \(\{W_n\} \) denote wait times for customers. We have

\[
W_0 = 0 \\
W_{n+1} = \max(0, W_n + X_n - \tau_{n+1})
\]
Ordering for $G/G/1$ Queue

Thm. If $\tau_n^{(1)} \geq_{cx} \tau_n^{(2)}$, $X_n^{(2)} \leq_{icx} X_n^{(1)}$, $\forall n$, then $W_n^{(2)} \leq_{icx} W_n^{(1)}$, $\forall n$.

Proof. By induction.
NBUE, NWUE Random Variables

Defn. $X \in \mathbb{R}^+$ is said to be *new better than used in expectation* (NBUE) iff

$$E[X - a | X > a] \leq E[X], \quad \forall a > 0$$

$X \in \mathbb{R}^+$ is said to be *new worse than used in expectation* (NBUE) iff

$$E[X - a | X > a] \geq E[X], \quad \forall a > 0$$

Examples.

- an exponential rv X is both NBUE and NWUE
- an Erlang rv X of order $r > 1$ is NBUE
- a deterministic rv is NBUE
- an H_r rv X is NWUE

Thm. Suppose that X is NBUE, Y is an exponential rv, and $E[X] = E[Y]$, then $X \leq_{cx} Y$. If X is NWUE, then $X \geq_{cx} Y$.

5
G/G/1 with NBUE, NWUE Interarrival Times

Consider a G/G/1 queue that exhibits steady state ($\lambda E[X] < 1$). Suppose that the interarrival times are NBUE with mean $1/\lambda$, then

$$E[W] \leq \frac{\lambda E[X^2]}{2(1 - \lambda E[X])}$$

If the interarrival times are NWUE, then

$$E[W] \geq \frac{\lambda E[X^2]}{2(1 - \lambda E[X])}$$

These are come from the icx comparison results coupled with the comparisons between NBUE, NWUE rvs and exponential rvs.
Comparison of scheduling policies for $G/G/1$ queue

- $G/G/1$ queue, interarrival times $\{\tau_n\}$, iid service times $\{X_n\}$. $\{X_n\}$ independent of $\{\tau_n\}$.
- Σ_{np} - class of work conserving (non-idling) non-preemptive policies that do not use service time information. e.g., FIFO, LIFO $\in \Sigma_{np}$
- assume steady state; S_{π} - steady state sojourn time under policy $\pi \in \Sigma_{np}$
- note: $E[S_{\pi}]$ does not depend on π

Thm. FIFO minimizes S_{π} in the sense of cx order, LIFO maximizes S_{π} in the sense of cx order,

$$S_{FIFO} \leq_{cx} S_{\pi} \leq_{cx} S_{LIFO}, \quad \forall \pi \in \Sigma_{np}$$
Comparison of scheduling policies for $G/G/1$ queue

Proof consists of 2 parts. First restrict ourselves to N arrivals. Second take limit as $N \to \infty$. Define cost function

$$C(N, \pi) = \sum_{i=1}^{N} f(S_i(\pi)),$$

$f(\cdot)$ a cx function, $S_i(\pi)$ sojourn time of ith job under π. We are interested in $E[C(N, \pi)]$.

iid service times implies that they can be assigned in order of service. Condition on arrival times $a_1 < a_2 < \cdots < a_N$ and service times x_1, x_2, \ldots, x_N.

Number jobs in order of arrival. π_m is index of job scheduled in m-th position by π, $m = 1, \ldots, N$.

Let d_l denote l-th departure time; does not depend on π.

$$d_l = \max(d_{l-1}, a_l) + s_l$$

$$d_0 = 0$$
Comparison of scheduling policies for $G/G/1$ queue

Consider arbitrary policy $\pi \in \Sigma_{np}$, $\pi \neq FIFO$. Let π differ from FIFO for first time at m-th scheduling decision,

$$
\begin{align*}
\pi_m &= u \neq m \\
\pi_l &= l & l = 1, \ldots, m-1 \\
\pi_v &= m & v > m
\end{align*}
$$

Construct policy π' that behaves like π for all but scheduling decisions m, v.

$$
\begin{align*}
\pi'_l &= \pi_l & l \neq m, v \\
\pi'_m &= m \\
\pi'_v &= u
\end{align*}
$$

See figure on next page.
Comparison of scheduling policies for $G/G/1$ queue
Comparison of scheduling policies for $G/G/1$ queue

Sum of response times the same for π and π'. Difference in cost function is

$$C(N, \pi) - C(N, \pi')$$

$$= f(S_m(\pi)) + f(S_u(\pi)) - [f(S_m(\pi)) + f(S_u(\pi))]$$

$$= [f(d_v - a_m) + f(d_m - a_u)]$$

$$- [f(d_v - a_u) + f(d_m - a_m)]$$

$$\geq 0$$

Other terms are equal and cancel. Inequality is consequence of convexity of f.

Repeat process on π' to obtain series of policies π, π', π'', \ldots. After finite number of steps, this process generates FIFO. This produces

$$C(N, \pi) \geq C(N, \pi') \geq C(N, \pi'') \geq \cdots \geq C(N, FIFO)$$
Comparison of scheduling policies for $G/G/1$ queue

Remove conditioning on arrival times and service times to yield

$$E[C(N, \pi)] \geq E[C(N, FIFO)]$$

in limit as $N \to \infty$,

$$\frac{1}{N}E[C(N, \pi)] \to E[f(S_\pi)]$$

Therefore,

$$S_\pi \geq_{cx} S_{FIFO}$$

A similar argument yields

$$S_\pi \leq_{cx} S_{LIFO}$$