Generating random variables

How do you generate instances of random variables?
• given X, $F_X(x)$, generate x_1, x_2, x_3, \ldots
• assume can generate numbers, uniformly distributed between 0 and 1 (ranf)
• inverse function method
 $x_1 = F^{-1}(\text{ranf})$
If $F_X(x) < F_Y(x)$, for all x, then

$$X <_d Y$$

X is less than Y in distribution.
Stochastic Processes
Stochastic process $X = \{X(t), t \in T\}$ is a collection of random variables (rvs)

- one rv for each $X(t)$ for each $t \in T$
- index set T - possible set of values of t
- state space - possible set of values of $X(t)$
- if T is countable, then X is discrete space process, will use notation $X = \{X_n, n \in T\}$
- if T is continuous, then $X = \{X(t), t \in T\}$ is continuous-time process
- $X(t)$ can take values from discrete- or continuous-state space
Examples

- no. transactions processed by a database system during interval \((0,t)\) - cont.-time, discrete-space
- no. packets thru router during \(n\)-th hour of day, \(\{X_n, n = 1,2,\ldots,24\}\), discrete-time, discrete-space
- response time of request to google server given that it arrives at time \(t\), \(\{X(t), t \geq 0\}\)
- Bernoulli process: \(\{Y_n, n = 0,1,\ldots\}\),

\[
P(Y_n = i) = \begin{cases}
p, & i = 0, \\
1-p, & i = 1, \\
0, & i \neq 0,1.
\end{cases}
\]
Counting process: a stochastic process that represents no. of events that occurred by time t; a continuous-time, discrete-state process $\{N(t), \ t \geq 0\}$

Definition: $\{N(t), \ t \geq 0\}$ is a counting process if

- $N(0) = 0$
- $N(t) \geq 0$
- $N(t)$ increasing (nondecreasing) in t
- $N(t) - N(s)$ is no. events in interval $[s, t]$
Counting process

- counting process has *independent increments* if no. events in disjoint intervals are independent

\[P(N_1 = n_1, N_2 = n_2) = P(N_1 = n_1)P(N_2 = n_2) \]

- counting process has *stationary increments* if no. events in \([t_1 + s, t_2 + s]\) has the same distribution as no. events in \([t_1, t_2]\), \(s > 0\)
Bernoulli process

- \(N_i \) - no. of successes by time \(i = 0,1,... \) is a counting process with independent and stationary increments
 - \(p \) – probability of failure; \(1-p \) – prob. of success

- \(P(N_i = n) = \binom{i}{n} (1-p)^n p^{i-n} \), \(n = 0,1,...,i \)

- \(E[N_i] = i (1 - p) \), \(\sigma^2_{N_i} = ip (1 - p) \), \(i = 0,1,... \)

- \(X \) - time between successes,
 - \(P(X = n) = (1 - p) p^{n-1} \), \(n = 1,2,... \)
 - \(F_X(n) = P(X < n) = 1 - p^n \), \(n = 1,2,... \)
 - \(E[X] = 1/(1 - p) \), \(\sigma^2_X = p/(1 - p)^2 \)
\[P(N_i = n) = \binom{i}{n} (1-p)^n p^{i-n} \]
\[P(X=n) = p^{n-1}(1 - p) \quad n = 1, \ldots \]
Bernoulli process

- $X^{(n)}$ - time between success and n-th successive success,

$$P(X^{(n)} = k) = \binom{k-1}{n-1} (1 - p)^n p^{k-n}, \quad k = n, n+1, \ldots$$

called Pascal distribution

$$E[X^{(n)}] = n/(1 - p)$$

- memoryless property

$$P(X = l + n | X > l) = (1 - p)p^{n-1}, \quad l \geq 0; n \geq 1$$
$X^{(n)}$
\[P(X^{(n)} = k) = P(N_{n-1} = k-1) (1 - p) \quad k = 1, \ldots \]

\[\binom{k-1}{n-1} (1 - p)^n p^{k-n}, \quad k = n, n+1, \ldots \]
Little o Notation

Definition: f is $o(h)$ if

$$\lim_{h \to 0} \frac{f(h)}{h} = 0$$

- $f(h) = h^2$ is $o(h)$
- $f(h) = h$ is not
- $f(h) = h^r, \ r > 1$ is $o(h)$
- $\sin(h)$ is not
- If f, g are $o(h)$, then $f(h) + g(h) = o(h)$
Example

Example: exponential rv X with parameter λ has distribution $P(X < h) = 1 - e^{-\lambda h}$, $h > 0$,

\[
P(X \leq t + h \mid X > h) = P(X \leq h),
\]
\[
= 1 - e^{-\lambda h},
\]
\[
= 1 - [1 - \lambda h + \sum_{n=2}^{\infty} (-\lambda h)^n / n!]
\]
\[
= \lambda h + o(h)
\]
Poisson process

counting process \{N(t), \ t \geq 0\} with rate \(\lambda > 0 \)

- independent and stationary increments
- \(P(N(h) = 1) = \lambda \ h + o(h) \)
- \(P(N(h) \geq 2) = o(h) \)
 \[\Rightarrow P(N(h) = 0) = (1- \lambda \ h) + o(h) \]

let \(P_n(t) = e^{-\lambda t} (\lambda t)^n / n! \), \(n = 0, 1, \ldots \)

- \(E[N(t)] = \lambda \ t \), \(\sigma^2_{N(t)} = \lambda \ t \)
- \(X \), time between events, \(F_X(t) = 1 - e^{-\lambda t} \), \(t \geq 0 \)
 probability density function (pdf) \(f_X(t) = \lambda e^{-\lambda t} \)
 \(E[X] = 1/\lambda \), \(\sigma^2_X = 1/\lambda^2 \)
\[P_n(t+\Delta t) = P_{n-1}(t) \lambda \Delta t + P_n(t)(1- \lambda \Delta t) + o(\Delta t) \]

\[P_n(t+\Delta t) - P_n(t) = P_{n-1}(t) \lambda \Delta t - P_n(t) \lambda \Delta t + o(\Delta t) \]

\[\frac{P_n(t+\Delta t) - P_n(t)}{\Delta t} = P_{n-1}(t) \lambda - P_n(t) \lambda \Delta t + o(\Delta t)/\Delta t \]

\[\frac{dP_n(t)}{dt} = \lambda P_{n-1}(t) - \lambda P_n(t), \quad n=1,2,\ldots \]

\[\frac{dP_0(t)}{dt} = -\lambda P_1(t) \]
Solutions

\[\frac{dP_n(t)}{dt} = \lambda P_{n-1}(t) - \lambda P_n(t), \quad n = 1,2,\ldots \]
\[\frac{dP_0(t)}{dt} = -\lambda P_1(t) \]

\[P_n(t) = e^{-\lambda t} \left(\frac{\lambda t}{n!} \right), \quad n = 0,1,\ldots \]
Poisson process

- $X^{(n)}$, time from event until n-th successive event
 \[f_{X^{(n)}}(t) = \lambda(\lambda t)^{n-1} e^{-\lambda t} / n!, \quad t \geq 0 \] (Erlang rv of order n)

- take iid sequence of exponential rvs with rate λ,
 \[\{X_i\}_{i=1} \text{ define } N(t) = \max\{n| \sum_{1 \leq t \leq n} X_i \leq t\}, \]
 \[\{N(t)\} \text{ is a Poisson process} \]
Poisson process

- if $N(t)$ is a Poisson process and one event occurs in $[0, t]$, then the time to the event is uniformly distributed in $[0, t]$,

\[f_{X_1|N(t)=1}(x|1) = \frac{1}{t}, \quad 0 \leq x \leq t \]

- if $N_1(t)$ and $N_2(t)$ are independent Poisson processes with rates λ_1 and λ_2, then $N(t) = N_1(t) + N_2(t)$ is a Poisson process with rate $\lambda = \lambda_1 + \lambda_2$
Poisson process

- $N(t)$ is Poisson with rate λ, M_i is Bernoulli with success prob. p. Construct a new process $L(t)$ by only counting the n-th event in $N(t)$ whenever $M_n > M_{n-1}$ (i.e., success at time n) $L(t)$ is Poisson with rate λp

- exhibits memoryless property,

$$f_{X|X>t}(x|t) = \lambda e^{-\lambda(x-t)},$$

or if $X = t+Y$, i.e., Y is the remaining time until event,

$$f_Y(y) = \lambda e^{-\lambda y} = f_X(y)$$
Example

Consider a web server where failures are described by a Poisson process with rate $\lambda = 2.4$/day, i.e., the time between failures, X, is exponential rv with mean $E[X] = 10$ hrs.

- $P($time between failures $< T$ days$) = \quad$
- $P($k failures in T days$) = \quad$
- $P(N(5) < 10) = \quad$
- Look in on system at random day, what is prob. of no. failures during next day?
- Failure is memory failure with prob. 1/9, CPU failure with prob. 8/9. Failures occur as independent events. What is process governing memory failures?
Review

- Bernoulli process \(\{N_i\} \) with parameter \(p \) (prob of event)
- Counting process with stationary and independent increments
 \[
P(N_i = n) = \binom{i}{n} p^n(1-p)^{i-n}
\]
- \(X \) – interevent time (interarrival time)
 \[
P(X = k) = (1-p)^{k-1} p
\]
- \(X^{(n)} \) – time to n-th successive event
Poisson process \{N(t)\} with parameter \(\lambda\) (event rate)

counting process with stationary and independent increments

\[P(N(t) = n) = (\lambda t)^n e^{-\lambda t} / n! , \quad n=0,1,\ldots \]

\(X\) – interevent time (interarrival time)

\[f_X(x) = \lambda e^{-\lambda t} , \quad t \geq 0 \]

\(X^{(n)}\) – time to \(n\)-th successive event
Properties

- Bernoulli and Poisson processes exhibit memoryless properties, i.e.,
 \[F_{X|X>t}(x-t) = F_X(x-t) \]
- Sum of two Poisson processes with rates \(\lambda_1 \) and \(\lambda_2 \) is Poisson with rate \(\lambda_1 + \lambda_2 \)
- Thinning a Poisson process with rate \(\lambda \) using a Bernoulli process with probability \(p \) yields a Poisson process with rate \(\lambda p \)
Order Statistics

- $X_1, X_2, \ldots, X_n \in \mathbb{R}$
- $X_{(i)}$ – i-th smallest value of X_1, X_2, \ldots, X_n
 - i-th order statistic
- range $X_{ij} - X_{(i)} - X_{(j)}$
- examples
 - parallel execution of n independent tasks, $X_{(n)}$
 - fault tolerant computing, majority voting, $n = 3$, $X_{(2)}$
 - diversity routing, $X_{(1)}$
 - reliable multicast
Max, Min

- $F(x) \equiv F_{X_i}(x)$; $F_{i}(x) \equiv F_{X(i)}(x)$
- $F_n(x) = P(\max\{X_i\} \leq x)$
 - $= P(X_1 \leq x, \ldots, X_n \leq x)$
 - $= \prod P(X_i \leq x) = (F(x))^n$
- $F_1(x) = P(\min\{X_i\} \leq x)$
 - $= 1 - P(\min\{X_i\} > x)$
 - $= 1 - \prod P(X_i > x)$
 - $= 1 - (1-F(x))^n$
\(F_i(x) \)

\[F_r(x) = P(X_{(r)} \leq x) \]

\[= P(\text{at least } r \text{ of } X_i \text{ are less than } x) \]

\[= \sum_{r \leq j \leq n} \binom{n}{j} (F(x))^j (1-F(x))^{n-j} \]
Consider a sender sending sequence of packets to R receivers. Assume packet losses at receivers are described by identical and independent Bernoulli processes with loss prob. p. Suppose sender transmits each message repeatedly until correctly received at least once by each receiver. Let M_i denote the number of transmissions needed to transmit i-th msg. correctly to all receivers. What are the statistics of $\{M_i\}$?
because of definition of Bernoulli process, $M_i = M$ independent of i

let X_i denote the number of transmissions required for receiver i to receive msg; $P(X_i \leq n) = 1-p^n$

note that $M = \max_{1 \leq i \leq R} X_i$

therefore, $P(M < n) = \prod P(X_i \leq n)$

$= (1 - p^n)^R$
What is $E[M]$?

whenever X is a nonnegative rv,

$$E[X] = \int_0^\infty (1 - F_X(x)) \, dx$$

if X is discrete

$$E[X] = \sum_{i=0}^{\infty} P(X > i)$$
therefore

\[E[M] = \sum_{i=0}^{\infty} \left(1 - \left(1 - p^i \right)^R \right), \]

\[= \sum_{i=1}^{R} \binom{R}{i} (-1)^{i+1} \frac{1}{(1 - p^i)} \]
Reliable Multicast

Note slow growth. Suggests that reliable multicast protocol designs should be able to scale up in number of receivers.
Renewal process

- Counting process in which inter-event time X_1, X_2, \ldots are iid rvs with cdf $F_X(x) = P(X \leq x)$, $x \geq 0$.

- Assume it also has density function $f_X(x)$, $x \geq 0$.
Q. what is \(f_{X|X>y}(x|X>y) \) ?

A.
\[
f_{X|X>y}(x \mid X > y) = \begin{cases}
 f_X(x)/(1 - F_X(x)), & x > y, \\
 0, & \text{otherwise}
\end{cases}
\]

if \(Y = X-y \), then

\[
f_{Y|X>y}(w \mid X > y) = \frac{f_X(w+y)}{1 - F_X(y)}
\]
Random incidence

- given renewal process with $f_X(x)$
- Y – time from random point in time to next event.

$f_Y(x)$?
What is $f_W(w)$?

$$f_W(w) \propto w \ f_X(w)$$

$$= w \ f_X(w)/E[X], \ w \geq 0$$

What is $f_{Y|W}(y|w)$?

$$f_{Y|W}(y|w) = \begin{cases}
1/w, & 0 \leq y \leq w \\
0, & \text{otherwise}
\end{cases}$$
\(f_{W,Y}(w,y) \)?

\[
f_{W,Y}(w,y) = f_{W}(w) \cdot f_{Y|W}(y|w)
\]

\[
= \begin{cases}
 f_{X}(w)/E[X], & 0 \leq y \leq w \\
 0, & \text{otherwise}
\end{cases}
\]
\[f_Y(y) = \int f_{W,Y}(w,y) \, dw \]

\[= \int_{y}^{\infty} f_X(w) / E[X] \, dw \]

\[= (1 - F_Y(y)) / E[X] \]
Remarks

- \(E[Y] = \frac{E[X]}{2} + \frac{\text{Var}[X]}{2E[X]} \)

- **Note:**
 - if \(\text{Var}[X] > E^2[X] \), then \(E[Y] > E[X] \)
 - if \(\text{Var}[X] = E^2[X] \), then \(E[Y] = E[X] \)
 - if \(\text{Var}[X] < E^2[X] \), then \(E[Y] < E[X] \)

- \(X - \text{exponential} \rightarrow f_Y(y) = \lambda e^{-\lambda y} \) (memoryless)
Birth Death process

Continuous-time, discrete-space stochastic process \(\{N(t), \ t \geq 0\} \), \(N(t) \in \{0, 1,...\} \)

\(N(t) \) - population at time \(t \)

- \(P(N(t+h) = n+1 \mid N(t) = n) = \lambda_n h + o(h) \)
- \(P(N(t+h) = n-1 \mid N(t) = n) = \mu_n h + o(h) \)
- \(P(N(t+h) = n \mid N(t) = n) = 1-(\lambda_n + \mu_n) h + o(h) \)
- \(\lambda_n \) - birth rates
- \(\mu_n \) - death rates, \(\mu_0 = 0 \)

Q: what is \(P_n(t) = P(N(t) = n) \)? \(n = 0,1,... \)
Birth Death process

\[\frac{dP_n(t)}{dt} = P_{n-1}(t) \lambda_{n-1} + P_{n+1}(t) \mu_{n+1} - (\lambda_n + \mu_n) P_n(t), \quad n=1,\ldots \]

\[\frac{dP_0(t)}{dt} = P_1(t) \mu_1 - \lambda_0 P_0(t) \]

- behavior of \(P_n(t) \) depends on initial condition \(P_n(0) \)
Stationary behavior of B-D process

Behavior as $t \rightarrow \infty$

if reasonable system, expect it to reach equilibrium

Q: what is equilibrium? no change in $P_n(t)$ as t changes; does not depend on initial conditions

$$(\lambda_n + \mu_n) P_n = \lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1}$$

where

$$P_n = \lim_{t \rightarrow \infty} P_n(t)$$
Transition state diagram:

Balance equations:

rate of transitions into $n = \text{rate of transitions out of } n$

$\lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1} = (\lambda_n + \mu_n) P_n, \quad n \geq 1$

$\mu_1 P_1 = \lambda_0 P_0, \quad n = 0$
B-D process

Note: have a countable no. linear equations; also need

\[\sum_{n=0}^{\infty} P_n = 1 \]

Example: queueing system with one server, no waiting line
- Poisson arrivals, rate \(\lambda \)
- Exponential service times, rate \(\mu \)

Solution:

- \(P_0 = \frac{\mu}{\mu + \lambda} \)
- \(P_1 = \frac{\lambda}{\mu + \lambda} \)