Interlude: Transform Theory
Interlude: Transform Theory

• Why transforms? - makes life easier
Interlude: Transform Theory

- Why transforms? - makes life easier
- non-negative integer rvs - \(z \)-transform, probability generating function (pgf)
Interlude: Transform Theory

- Why transforms? - makes life easier
- non-negative integer rvs - z-transform, probability generating function (pgf)
- nonnegative, real valued rvs - Laplace transform (LT)
z-transform
z-transform

Defn.
z-transform

Defn. Have rv X that takes nonnegative integer values

$p_k = P(X = k), \ k = 0, 1, \ldots$
z-transform

Defn. Have rv X that takes nonnegative integer values

$p_k = P(X = k), \ k = 0, 1, \ldots$

$$G_X(z) \equiv E[z^X] = \sum_{k=0}^{\infty} p_k z^k$$
z-transform: examples
z-transform: examples

- X is geometric rv, $p_k = (1 - p)p^k$,
z-transform: examples

- X is geometric rv, $p_k = (1 - p)p^k$,

$$G_X(z) =$$
\textbf{z-transform: examples}

- X is geometric rv, $p_k = (1 - p)p^k$,

$$G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k$$
z-transform: examples

- X is geometric rv, \(p_k = (1 - p)p^k \),

\[
G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k = \frac{1 - p}{1 - pz},
\]
z-transform: examples

- X is geometric rv, $p_k = (1 - p)p^k,$

$$G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k = \frac{1 - p}{1 - pz},$$

for $pz < 1$
z-transform: examples

- X is geometric rv, \(p_k = (1 - p)p^k \),

\[
G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k = \frac{1 - p}{1 - pz},
\]

for \(pz < 1 \)

- Poisson distr., \(p_k = \lambda^k e^{-\lambda}/k! \)
z-transform: examples

- **X** is geometric rv, \(p_k = (1 - p)p^k \),

\[
G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k = \frac{1 - p}{1 - pz},
\]

for \(pz < 1 \)

- **Poisson distr.**, \(p_k = \lambda^k e^{-\lambda}/k! \)

\[
G_X(z) =
\]
z-transform: examples

- X is geometric rv, $p_k = (1 - p)p^k$,

$$G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k = \frac{1 - p}{1 - p z},$$

for $pz < 1$

- Poisson distr., $p_k = \lambda^k e^{-\lambda}/k!$

$$G_X(z) = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} z^k$$
z-transform: examples

- X is geometric rv, $p_k = (1 - p)p^k$,

$$G_X(z) = \sum_{k=0}^{\infty} (1 - p)p^k z^k = \frac{1 - p}{1 - pz},$$

for $pz < 1$

- Poisson distr., $p_k = \lambda^k e^{-\lambda}/k!$

$$G_X(z) = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} z^k$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} (\lambda z)^k /k!,$$
\[= e^{-\lambda(1-z)} \]
Benefits
Benefits

moments:

\[\frac{dG_X(z)}{dz} = \sum_{k=1}^{\infty} k p_k z^{k-1} \]
Benefits

moments:

\[
\frac{dG_X(z)}{dz} = \sum_{k=1}^{\infty} kp_k z^{k-1}
\]

which translates to

\[
E[X] =
\]
Benefits

moments:

\[\frac{dG_X(z)}{dz} = \sum_{k=1}^{\infty} kp_k z^{k-1} \]

which translates to

\[E[X] = \sum_{k=1}^{\infty} kp_k z^{k-1} \bigg|_{z=1} = \]
Benefits

moments:

\[\frac{dG_X(z)}{dz} = \sum_{k=1}^{\infty} kp_k z^{k-1} \]

which translates to

\[E[X] = \sum_{k=1}^{\infty} kp_k z^{k-1} \bigg|_{z=1} = \frac{dG_X(z)}{dz} \bigg|_{z=1} \]
similarly

\[\frac{d^2 G_X(z)}{dz^2} \bigg|_{z=1} = E[X^2] - E[X] \]
similarly

\[
\left. \frac{d^2 G_X(z)}{dz^2} \right|_{z=1} = E[X^2] - E[X]
\]

solution of difference equations: will look at soon
similarly

\[\frac{d^2 G_X(z)}{dz^2} \bigg|_{z=1} = \mathbb{E}[X^2] - \mathbb{E}[X] \]

solution of difference equations: will look at soon

convolution: let \(X, Y \) be independent rvs with pgfs \(G_X(z) \) and \(G_Y(z) \).
similarly

\[
\frac{d^2 G_X(z)}{dz^2} \bigg|_{z=1} = E[X^2] - E[X]
\]

solution of difference equations: will look at soon

convolution: let \(X, Y \) be independent rvs with pgfs \(G_X(z) \) and \(G_Y(z) \). Let \(U = X + Y \),
similarly

\[\frac{d^2 G_X(z)}{dz^2} \bigg|_{z=1} = E[X^2] - E[X] \]

solution of difference equations: will look at soon

convolution: let \(X, Y \) be independent rvs with pgfs \(G_X(z) \) and \(G_Y(z) \). Let \(U = X + Y \),

\[G_U(z) = \]
similarly

\[\frac{d^2 G_X(z)}{dz^2} \bigg|_{z=1} = E[X^2] - E[X] \]

solution of difference equations: will look at soon

convolution: let \(X, Y \) be independent rvs with pgfs \(G_X(z) \) and \(G_Y(z) \). Let \(U = X + Y \),

\[G_U(z) = G_X(z)G_Y(z) \]
Solution of $\mathcal{M}/\mathcal{M}/1$ Queue Using Transforms
Solution of $M/M/1$ Queue Using Transforms

Balance equations:
Solution of $M/M/1$ Queue Using Transforms

Balance equations:

$$(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots$$
Solution of M/M/1 Queue Using Transforms

Balance equations:

$$(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots$$

$$\lambda\pi_0 = \mu\pi_1$$
Solution of $\mathcal{M}/\mathcal{M}/1$ Queue Using Transforms

Balance equations:

\[
(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots
\]

\[
\lambda\pi_0 = \mu\pi_1
\]

These two equations can be combined to get

\[
(\lambda + \mu)\pi_i =
\]
Solution of $\text{M}/\text{M}/1$ Queue Using Transforms

Balance equations:

$$(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots$$

$$\lambda\pi_0 = \mu\pi_1$$

These two equations can be combined to get

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\} \lambda\pi_{i-1}$$
Solution of $M/M/1$ Queue Using Transforms

Balance equations:

\[(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots\]

\[\lambda\pi_0 = \mu\pi_1\]

These two equations can be combined to get

\[(\lambda + \mu)\pi_i = 1_{\{i \neq 0\}}\lambda\pi_{i-1} + \mu\pi_{i+1}\]
Solution of $M/M/1$ Queue Using Transforms

Balance equations:

\[(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots\]
\[\lambda\pi_0 = \mu\pi_1\]

These two equations can be combined to get

\[(\lambda + \mu)\pi_i = 1_{i \neq 0}\lambda\pi_{i-1} + \mu\pi_{i+1} + 1_{i = 0}\mu\pi_0 \quad i = 0, 1, \ldots\]
Solution of $M/M/1$ Queue Using Transforms

Balance equations:

$$(\lambda + \mu)\pi_i = \lambda\pi_{i-1} + \mu\pi_{i+1}, \quad i = 1, \ldots$$

$$\lambda\pi_0 = \mu\pi_1$$

These two equations can be combined to get

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\}\lambda\pi_{i-1} + \mu\pi_{i+1} + 1\{i = 0\}\mu\pi_0 \quad i = 0, 1, \ldots$$
Solution of $M/M/1$ Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1[i \neq 0] \lambda \pi_{i-1} + \mu \pi_{i+1} + 1[i = 0] \mu \pi_0 \quad i = 0, 1, \ldots$$
Solution of M/M/1 Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\}\lambda \pi_{i-1} + \mu \pi_{i+1} + 1\{i = 0\} \mu \pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i
Solution of $M/M/1$ Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\}\lambda\pi_{i-1} + \mu\pi_{i+1} + 1\{i = 0\}\mu\pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i =$$
Solution of $\mathcal{M}/\mathcal{M}/1$ Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\}\lambda\pi_{i-1} + \mu\pi_{i+1} + 1\{i = 0\}\mu\pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i$$
Solution of $\text{M}/\text{M}/1$ Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\} \lambda \pi_{i-1} + \mu \pi_{i+1} + 1\{i = 0\} \mu \pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i + z^{-1} \sum_{i=1}^{\infty} \pi_i z^i + \pi_0$$
Solution of $\mathcal{M}/\mathcal{M}/1$ Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\}\lambda\pi_{i-1} + \mu\pi_{i+1} + 1\{i = 0\}\mu\pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i + z^{-1} \sum_{i=1}^{\infty} \pi_i z^i + \pi_0$$

or

$$(1 + \rho) G_N(z) =$$
Solution of M/M/1 Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\}\lambda \pi_{i-1} + \mu \pi_{i+1} + 1\{i = 0\}\mu \pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i + z^{-1} \sum_{i=1}^{\infty} \pi_i z^i + \pi_0$$

or

$$(1 + \rho) G_N(z) = \rho z G_N(z)$$
Solution of M/M/1 Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1\{i \neq 0\} \lambda \pi_{i-1} + \mu \pi_{i+1} + 1\{i = 0\} \mu \pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i + z^{-1} \sum_{i=1}^{\infty} \pi_i z^i + \pi_0$$

or

$$(1 + \rho) G_N(z) = \rho z G_N(z) + z^{-1} (G_N(z) - \pi_0)$$
Solution of $M/M/1$ Queue Using Transforms

$$(\lambda + \mu)\pi_i = 1{i \neq 0}\lambda\pi_{i-1} + \mu\pi_{i+1} + 1{i = 0}\mu\pi_0 \quad i = 0, 1, \ldots$$

Multiplying by z^i, using $\rho = \lambda/\mu$, and summing over i

$$(1 + \rho) \sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i + z^{-1} \sum_{i=1}^{\infty} \pi_i z^i + \pi_0$$

or

$$(1 + \rho) G_N(z) = \rho z G_N(z) + z^{-1}(G_N(z) - \pi_0) + \pi_0$$
Solution of M/M/1 Queue Using Transforms
Solution of $M/M/1$ Queue Using Transforms

\[(1 + \rho)G_N(z) = \rho z G_N(z) + z^{-1}(G_N(z) - \pi_0) + \pi_0\]

Multiplying by z and rearranging yields
Solution of $M/M/1$ Queue Using Transforms

\[(1 + \rho)G_N(z) = \rho z G_N(z) + z^{-1}(G_N(z) - \pi_0) + \pi_0\]

Multiplying by z and rearranging yields

\[(\rho z^2 - (1 + \rho)z + 1)G_N(z) = \]
Solution of $\mathcal{M}/\mathcal{M}/1$ Queue Using Transforms

\[(1 + \rho)G_N(z) = \rho z G_N(z) + z^{-1}(G_N(z) - \pi_0) + \pi_0\]

Multiplying by z and rearranging yields

\[(\rho z^2 - (1 + \rho)z + 1)G_N(z) = (1 - z)\pi_0\]
Solution of $M/M/1$ Queue Using Transforms

$$(1 + \rho)G_N(z) = \rho z G_N(z) + z^{-1}(G_N(z) - \pi_0) + \pi_0$$

Multiplying by z and rearranging yields

$$(\rho z^2 - (1 + \rho)z + 1)G_N(z) = (1 - z)\pi_0$$

Now,

$$\rho z^2 - (1 + \rho)z + 1 = (1 - z)(1 - \rho z)$$

which substituted into the above expression yields

$$G_N(z) = \pi_0/(1 - \rho z),$$
\begin{equation}
1 - \rho = \frac{1 - \rho}{1 - \rho z}
\end{equation}
Inversion of z-transforms
Inversion of z-transforms

We have looked at

\[\{p_0, p_1, \ldots \} \rightarrow G_X(z) \]
Inversion of z-transforms

We have looked at

\[\{p_0, p_1, \ldots \} \rightarrow G_X(z) \]

How about

\[G_X(z) \xrightarrow{\text{invert}} \{p_0, p_1, \ldots \} \]
The definition is:
The definition is:

\[p_n = \frac{1}{n!} \frac{d^n G_X(z)}{dz^n} \bigg|_{z=0} \]
The definition is:

\[p_n = \frac{1}{n!} \frac{d^n G_X(z)}{dz^n} \bigg|_{z=0} \]

Not always easy to compute and not focus of this lecture.

Note that \(p_0 = G_X(0) \) (and \(G_X(1) = 1 \))
Laplace Transform
Laplace Transform

Defn.
Laplace Transform

Defn. Have nonnegative, real valued rv X with density function $f_X(x) \ (f_X(x) = 0, \ x < 0) \ k = 0, 1, \ldots$
Laplace Transform

Defn. Have nonnegative, real valued rv X with density function $f_X(x) \quad (f_X(x) = 0, \ x < 0) \quad k = 0, 1, \ldots$

$$F^*_X(s) \equiv E[e^{-sX}] =$$
Laplace Transform

Defn. Have nonnegative, real valued rv X with density function $f_X(x)$ ($f_X(x) = 0, \ x < 0$) $k = 0, 1, \ldots$

$$F_X^*(s) \equiv E[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx} \, dx$$

Example
Laplace Transform

Defn. Have nonnegative, real valued rv \(X \) with density function \(f_X(x) \) \((f_X(x) = 0, \ x < 0)\) \(k = 0, 1, \ldots \)

\[
F_X^*(s) \equiv E[e^{-sX}] = \int_0^{\infty} f_X(x)e^{-sx} \, dx
\]

Example

- \(X \) is exponential rv, \(f_X(x) = \lambda e^{-\lambda x} \)
Laplace Transform

Defn. Have nonnegative, real valued rv X with density function $f_X(x)$ ($f_X(x) = 0$, $x < 0$) $k = 0, 1, \ldots$

$$F^*_X(s) \equiv \mathbb{E}[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx} \, dx$$

Example

- X is exponential rv, $f_X(x) = \lambda e^{-\lambda x}$

$$F^*_X(s) = \int_0^\infty$$
Laplace Transform

Defn. Have nonnegative, real valued rv X with density function $f_X(x)$ ($f_X(x) = 0, \ x < 0$) $k = 0, 1, \ldots$

$$F_X^*(s) \equiv E[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx} \, dx$$

Example

- X is exponential rv, $f_X(x) = \lambda e^{-\lambda x}$

$$F_X^*(s) = \int_0^\infty \lambda e^{-x(\lambda+s)} \, dx$$
Laplace Transform

Defn. Have nonnegative, real valued rv X with density function $f_X(x)$ ($f_X(x) = 0$, $x < 0$) $k = 0, 1, \ldots$

$$F_X^*(s) \equiv E[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx} \, dx$$

Example

- X is exponential rv, $f_X(x) = \lambda e^{-\lambda x}$

$$F_X^*(s) = \int_0^\infty \lambda e^{-x(\lambda+s)} \, dx = \frac{\lambda}{\lambda + s}$$
Moments:
Moments:

\[\mathbb{E}[X] = \]
Moments:

\[\mathbb{E}[X] = - \frac{d}{ds} F_X(s) \bigg|_{s=0} \]
Moments:

\[\mathbb{E}[X] = - \frac{d}{ds} F_X(s) \bigg|_{s=0} \]

\[\mathbb{E}[X^i] = \]
Moments:

\[
E[X] = - \left. \frac{d}{ds} F_X^*(s) \right|_{s=0}
\]

\[
E[X^i] = (-1)^i \left. \frac{d}{ds} F_X^*(s) \right|_{s=0}
\]
Properties of Laplace Transform
Properties of Laplace Transform

- convolution:
Properties of Laplace Transform

- **convolution:** if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F_{X_1}(s), \ldots, F_{X_n}(s)$,
Properties of Laplace Transform

- **convolution:** if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F_{X_1}(s), \ldots, F_{X_n}(s)$, $Y = \sum_{i=1}^{n} X_i$, then
Properties of Laplace Transform

- **convolution:** if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F_{X_1}(s), \ldots, F_{X_n}(s)$, $Y = \sum_{i=1}^{n} X_i$, then

$$F_Y(s) =$$
Properties of Laplace Transform

- **convolution:** if \(X_1, X_2, \ldots, X_n \) are independent, nonnegative rvs with transforms \(F_{X_1}^*(s), \ldots, F_{X_n}^*(s) \), \(Y = \sum_{i=1}^{n} X_i \), then

\[
F_Y(s) = F_{X_1}^*(s)
\]
Properties of Laplace Transform

- **convolution:** if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F_{X_1}^*(s), \ldots, F_{X_n}^*(s)$, $Y = \sum_{i=1}^{n} X_i$, then

$$F_Y(s) = F_{X_1}^*(s)F_{X_2}^*(s)$$
Properties of Laplace Transform

- **convolution**: if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F_{X_1}^*(s), \ldots, F_{X_n}^*(s)$, $Y = \sum_{i=1}^{n} X_i$, then

$$F_Y(s) = F_{X_1}^*(s)F_{X_2}^*(s) \cdots F_{X_n}^*(s)$$
Properties of Laplace Transform

• **convolution:** if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F_{X_1}^*(s), \ldots, F_{X_n}^*(s)$, $Y = \sum_{i=1}^{n} X_i$, then

$$F_Y(s) = F_{X_1}^*(s)F_{X_2}^*(s) \cdots F_{X_n}^*(s)$$

Example, if Y is n-th Erlang,
Properties of Laplace Transform

- **convolution:** if \(X_1, X_2, \ldots, X_n \) are independent, nonnegative rvs with transforms \(F_{X_1}^*(s), \ldots, F_{X_n}^*(s) \), \(Y = \sum_{i=1}^{n} X_i \), then

\[
F_Y(s) = F_{X_1}^*(s)F_{X_2}^*(s) \cdots F_{X_n}^*(s)
\]

Example, if \(Y \) is \(n \)-th Erlang, then

\[
F^*(s)
\]
Properties of Laplace Transform

- **convolution:** if X_1, X_2, \ldots, X_n are independent, nonnegative rvs with transforms $F^*_{X_1}(s), \ldots, F^*_{X_n}(s)$, $Y = \sum_{i=1}^{n} X_i$, then

$$F_Y(s) = F^*_{X_1}(s) F^*_{X_2}(s) \cdots F^*_{X_n}(s)$$

Example, if Y is n-th Erlang, then

$$F^*(s) = \left(\frac{\lambda}{\lambda + s} \right)^n$$
Properties of Laplace Transform

- **convolution:** if \(X_1, X_2, \ldots, X_n \) are independent, nonnegative rvs with transforms \(F_{X_1}^*(s), \ldots, F_{X_n}^*(s) \), \(Y = \sum_{i=1}^{n} X_i \), then

\[
F_Y(s) = F_{X_1}^*(s)F_{X_2}^*(s) \cdots F_{X_n}^*(s)
\]

Example, if \(Y \) is \(n \)-th Erlang, then

\[
F_Y^*(s) = \left(\frac{\lambda}{\lambda + s} \right)^n
\]
Let X_1, X_2, \ldots be iid nonnegative rvs with LT $F_X^*(s)$.
• Let X_1, X_2, \ldots be iid nonnegative rvs with LT $F_X^*(s)$. Let N be a discrete rv with pgf $G_N(z)$.
Let X_1, X_2, \ldots be iid nonnegative rvs with LT $F_X(s)$. Let N be a discrete rv with pgf $G_N(z)$. Let

$$Y = X_1 + \cdots + X_N$$
Let X_1, X_2, \ldots be iid nonnegative rvs with LT $F_X^*(s)$. Let N be a discrete rv with pgf $G_N(z)$. Let

$$Y = X_1 + \cdots + X_N$$

what is $F_Y^*(s)$?
• Let X_1, X_2, \ldots be iid nonnegative rvs with LT $F_X^*(s)$. Let N be a discrete rv with pgf $G_N(z)$. Let

$$Y = X_1 + \cdots + X_N$$

what is $F_Y^*(s)$?

$$F_Y^*(s) = G_N(F_X^*(s))$$